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On-demand serum-free media formulations for
human hematopoietic cell expansion using a high
dimensional search algorithm
Michelle M. Kim1 & Julie Audet 1,2

Substitution of serum and other clinically incompatible reagents is requisite for controlling

product quality in a therapeutic cell manufacturing process. However, substitution with

chemically defined compounds creates a complex, large-scale optimization problem due to

the large number of possible factors and dose levels, making conventional process optimi-

zation methods ineffective. We present a framework for high-dimensional optimization of

serum-free formulations for the expansion of human hematopoietic cells. Our model-free

approach utilizes evolutionary computing principles to drive an experiment-based feedback

control platform. We validate this method by optimizing serum-free formulations for first, TF-

1 cells and second, primary T-cells. For each cell type, we successfully identify a set of serum-

free formulations that support cell expansions similar to the serum-containing conditions

commonly used to culture these cells, by experimentally testing less than 1 × 10−5 % of the

total search space. We also demonstrate how this iterative search process can provide

insights into factor interactions that contribute to supporting cell expansion.
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The development of cell therapy strategies has gained trac-
tion as the interest for more personalized and novel ther-
apeutics heightened. While the core principle of cell

therapy is not new—bone marrow transplant for the treatment of
leukemia is an example therapy that can trace its origins to the
1950s1—the main challenge of easily and efficiently obtaining
compatible, safe, and competent source cells remains a challenge
to this day, and is expected to pose a bottleneck in the translation
of up-and-coming cell therapy strategies to the clinic. One of the
common aspects that limit the efficient expansion of source cells
is the requirement of serum in vitro. Serum batches vary in
composition which in turn can affect the numbers and types of
cell produced in culture, preventing a quality-by-design
approach2,3.

The identification of formulations to replace serum in cell
culture media4–6 presents a complex and difficult optimization
problem as the replacement culture would require a large number
of factors (cell culture supplements) in complex dose combina-
tions. Optimizing such a large problem by conventional means
such as statistical design of experiments7 and screening8,9 would
be deemed infeasible due to the large number of experiments
required. Alternatively, developing computational models to
predict biological responses would require comprehensive
mechanistic studies to identify factor effects as well as interaction
characteristics. This involves many years of intense investigation,
once again countering the progress and timely translation of
therapies. As a result, often the only alternative is to compare
among the commercially available formulations to find one that
suits one’s needs.

Previous studies demonstrating drug optimization strategies
relied on methods based on quadratic response surfaces of indi-
vidual factors over a range of doses10,11 to construct models
independent of mechanistic studies12. Recently, there has been
considerable interest in combining the more conventional
approach of combinatorial optimization13,14 with a strategy
robustly used in computational and digital systems based on the
Differential Evolution algorithm15 (Supplementary Fig. 1). The
incorporation of algorithmic optimization methods (including
Differential Evolution principles) have been shown to be a fea-
sible approach for the optimization of drug combinations based
on in vitro cell culture data13,16–20. This strategy is especially
befitting in cases where discovery of combinations of multiple
compounds are advantageous, but have only been applied to
small scale optimization involving fewer factors (4–8 factors),
requiring selective screening of multiple groups of factors, or
dependent on a process that involves heavy human intervention.
This approach also allows for the optimization of combinations of
factors without assuming a quadratic response surface and
without generating response profiles of individual factors. This is
advantageous, in particular when some factors may not exhibit
significant effects individually but require other factors to be
present in order to act through interactions.

Herein, we present an optimization platform integrating high-
throughput tools with a Differential Evolution-based algorithm
that was capable of model-free navigation of a high-dimensional
solution space (e.g. 15 factors at 6 dose levels) based on analyses
of biological response alone. In this study, we refer to this
approach as high dimensional-Differential Evolution (HD-DE).
This strategy enables an automated, efficient optimization strat-
egy for serum-free culture formulations that support cell expan-
sion. We demonstrate the effectiveness of this approach for the
identification of serum-free conditions for the expansion of two
types of human cells, first in TF-1 cells (a human myeloid pro-
genitor cell line) and subsequently in primary human T-cells for
which the standard culture media used contain fetal bovine serum
(FBS) and human serum, respectively. Finally, we illustrate how

the data generated during the optimization process can be used to
gain insights into factor potency, synergies, and dose-dependent
effects.

Results
Development of algorithmic optimization strategy. Based on a
number of previous studies16–18 supporting the capability and
resilience of the Differential Evolution algorithm in the optimi-
zation of cell system conditions, the performance of the Differ-
ential Evolution algorithm was assessed on a larger, more
complex optimization problem than demonstrated in any pre-
vious studies. Modifications required to the classic Differential
Evolution algorithm were designed to improve efficiency and to
accommodate the challenges in optimizing complex cell culture
systems. An experiment-based feedback control platform
enclosed all system inputs, parameters, and decision-making
parameters in a self-contained system for the optimization to run
independent of introduction of prior knowledge regarding
downstream mechanisms, interactions, models, and selection bias
(Fig. 1a). This closed feedback control strategy involved a
phenotype-driven optimization approach which based its deci-
sions on the overall response of the system to identify an
improved state. The response of interest in this study was the
degree of cell expansion, and the analyses of this experimental
data from the various formulations tested was used to navigate
the solution space. The variability present in the system was
recognized by introducing a statistical component in the design of
the optimization platform based on the variance observed in the
experimental results. Benefits of such approach to better represent
the range of biological responses21 have also been demonstrated
in our prior computational modeling studies where cell system-
level experimental variability was incorporated in in silico models.
This addition of variability consideration resulted in the
smoothing of the overall landscape reducing the prominence of
local maxima. A self-assembled library of test formulations and
results provided a robust and reliable foundation for identifying
potential solution regions and providing directional guidance to
pursue selective exploration and clearing22, accompanied by a
responsive optimization strategy based on feedback of experi-
mental results (Supplementary Fig. 2). The initial focus on
exploration of the solution space and concurrent pursuit of
multiple optimization routes maintains a test population size
through the process and further encourages the discovery of
regions of improved performance. This responsiveness of the
HD-DE approach conserved the goal-driven motivations of
conventional adaptive strategies using simpler methods compared
to strategies which combined multiple mutation and crossover
operations23. For comparison, a performance score was calcu-
lated, which was the cell expansion obtained with the encoun-
tered test formulations normalized to the maximum cell
expansion achieved by the serum-containing “Positive Control”
(PC) i.e. cell expansion achieved using commonly used serum-
containing culture formulation for a given cell type.

Prior to experimental optimization in vitro, several versions of
the algorithm were evaluated in silico by executing a test
optimization process using the Rosenbrock function24 as the
benchmark25,26 to test a 15-dimensional optimization problem
(i.e. 15-factors, each spanning 5 dose levels). A normal random
variable was incorporated into the objective function in order to
provide a more realistic simulation of the acquisition of a
biological response (i.e. an experimental result with variance) to
each formulation. The normalized response score (i.e. normalized
to the known maximum of the function or PC) and the number
of candidate solutions were identified as the critical indicators
that measured the algorithm performance by reflecting the
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successful convergence of the optimization solutions candidate
solution set (Fig. 1b, Supplementary Data 1). This set-up
established a performance evaluation structure that was main-
tained throughout in vitro data acquisition. As expected, the
performance of HD-DE was superior than a random selection of
a similar or greater total number of formulations scored on the
same benchmark as the in silico runs (see Supplementary
Discussion).

Robustness of optimization capacity. Next, the HD-DE algo-
rithm previously tested in silico was given an in vitro high
dimension optimization problem of 15 cell culture factors com-
prising of supplements such as small molecule inhibitors, growth
factors, and nutrient compounds, each at up to 6 doses (Sup-
plementary Table 1). These experiments were aimed at optimiz-
ing the serum-free culture of TF-1 cells, a cytokine-dependent
human hematopoietic progenitor cell line27. The factors were

selected with the intent to replace the fetal bovine serum (FBS)
added to the cell culture medium and to reduce the concentration
of granulocyte-macrophage colony-stimulating factor (GM-CSF)
required. The iterative feedback control (Fig. 1a) was imple-
mented to generate test formulations (factor-dose combinations)
and analyze responses with the aim of promoting cell expansion
of TF-1 cells in the absence of serum. The profile of algorithm
performance and behavior from in silico optimization against a
benchmark function with a known solution (Supplementary
Fig. 3) was used as a baseline to monitor the progress of the
in vitro optimization using HD-DE. The in vitro validation of the
HD-DE optimization was performed by comparing the cell
expansion achieved by the serum-free formulations to that of the
serum-supplemented positive control (PC) condition. While not a
direct assessment of optimization performance within the defined
parameters (Supplementary Table 1), this provided a perfor-
mance standard to which the HD-DE could be compared.
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Fig. 1 Schematic of the closed feedback optimization design leading to the improved optimization performance of the HD-DE strategy against a benchmark
problem in silico. a All system inputs required by the algorithm (number of factors, dose levels, HD-DE parameters, decision-making criteria) were pre-
defined. The algorithm-generated test formulations were compounded according to the corresponding recipe and cells cultured. The final cell count
(system response) was input into the algorithm which analyzed the response and iterated (further optimized) or terminated. A single cycle from generating
combinations through in vitro culture, analysis, evaluation, and decision to iterate or terminate made up a single generation (abbreviated to “G(n)” with n=
number of generation) of the HD-DE-driven optimization process. For in silico simulations, a benchmark function and a normal random variable was used
to generate the response in lieu of cell culture. The result of evaluating the benchmark function for each given formulation was treated as the system input
equivalent to the biological response. b The classical Differential Evolution was ineffective in improving the overall performance against a high-dimensional
benchmark problem such as the Rosenbrock function. Recognition of the variability (“Classic DE+ var”) in the simulated data produced some improvement
in the overall performance at the expense of more formulations being tested. Additionally, the introduction and utilization of information collated in the
self-assembled data library (HD-DE strategy) enabled selective exploration and clearing of candidate formulations, further improving performance and
efficiency of the overall optimization process. Data presented three-independent sets for Classic DE and Classic DE+ var conditions, and eight-
independent sets for HD-DE condition. Data represent mean ± standard error of the mean (SEM)
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To test the robustness of the HD-DE algorithm-guided
optimization process, we repeated the search for serum-free
formulations in three-independent experiments, in run 1–3,
which were biological replicates initiated from three different
cryopreserved TF-1 cell batches. Each run started with testing of a
unique set of formulations (initial conditions). Figure 2a indicates
that each trial followed a distinct path to optimization. However,
a similar level of cell expansion was reached at convergence,
demonstrating the ability of the HD-DE approach to deal with
different initial conditions and the variability inherent to
biological experiments. The in vitro optimization process was
handled by the algorithm in a similar manner as in silico with the
number of formulations with improved cell expansion between
consecutive generations decreasing and formulations with no
further improvement, increasing at later generations (Supple-
mentary Fig. 3, Supplementary Fig. 4a, b). Despite the large
solution space presented to the algorithm (Supplementary
Table 1), identification of serum-free formulations resulting in

levels of cell expansion comparable to the serum-containing PC
condition was achieved with the testing of less than 800 unique
formulations (Fig. 2b).

Further evaluation using principal component analysis (PCA)
of the formulations of the final candidate solution set suggested
that the algorithm identified similarly performing formulations
(Fig. 2c) clustering in various regions of the solution space from
distinct initial conditions. Additionally, while the solution regions
may differ, the overall clustering characteristics and relationship
among the formulations of the candidate solution set as measured
by Hamming and Levenshtein distances (Supplementary Fig. 4c,
d) remained consistent. Based on these observations, the relative
composition of the candidate solution set formulations was
further analyzed. The loading of each factor from PCA (Fig. 2c,
red arrows radiating outwards from origin) showed the varying
degree to which each factor was conserved among the final
candidate solution set formulations. Conventionally, factors with
significant effect on the overall response were represented to be
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Fig. 2 In vitro results from three-independent experimental runs demonstrate robustness of the HD-DE optimization process for TF-1 cells. a The algorithm
was able to identify optimized conditions that sustained cell expansion under serum-free formulations. Variation in overall performance underscored the
presence of variability in biological systems. The performance was normalized to that of the known maximum score (PC of TF-1 cell culture). b Despite
variability, the algorithm was able to keep the optimization cost under control as it utilized the information gathered. c PCA loading illustrated the degree to
which factor doses were conserved in the candidate solution set formulations. (See Supplementary Table 1 for factor legend). Data represent mean ± SEM
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further away from the origin (0, 0) of the PCA biplot. As the
formulations consisted of final solutions, the effect of any single
factor on the overall response bore less significance. Considering
only the distance from the origin, the more conserved a factor
dose was among the candidate solution set formulations, the PCA
loading determined the factor to have less effect on the overall
response, positioning the factor closer to origin. This applied
regardless of the nature of the factor effects, which also correlated
to the estimated factor effects elucidated from other analyses
(Supplementary Fig. 5, Supplementary Fig. 6). The pattern of
conserved factors and doses was also reflected in the composition
breakdown of the candidate solution sets for each experiment,
and in the comparison between experiments (Supplementary
Fig. 6, right panels). Positive-effect factors consistently had
greater proportion of formulations with high-dose level of such
factors, while negative effect factors had greater proportion of
formulations with these factors at low dose levels.

Optimization of human T-cell expansion culture formulations.
Following the in vitro optimization of serum-free media of TF-1
cells, we used the same optimization strategy to identify and
optimize serum-free media formulations for primary human T-
cell culture. 14 factors (Supplementary Table 2) and their corre-
sponding dose levels were defined, and the optimization process
was executed using frozen cell aliquots from a single donor, and
performance was compared to the positive control (PC) condition
for T cells (a serum-supplemented formulation for T-cell culture).
By the end of 6 generations, the optimization process was able to
identify a number of formulations that supported comparable
levels of cell expansion (i.e. 70–80%) to the PC (Fig. 3a). Less than
600 unique formulations were tested in the 6 generations (Sup-
plementary Fig. 7a, b), following a trend similar to that observed
in the previous optimization using TF-1 cells. The overall per-
formance of the candidate solution set at each generation fol-
lowed the expected behavior where the number of formulations
that were further improved between consecutive generations
decreased at later generations. Concurrently, the number of for-
mulations carried over between consecutive generations increased
and converged towards the population size (Supplementary

Fig. 7c, d). This resulted in an increase in the overall similarity at
later generations (Supplementary Fig. 7e). While the overall
behavior of the optimization was consistent with previous
observations with TF-1 cells, fewer formulations achieved the
same level of performance score as previously observed for TF-1
cells were identified (Supplementary Fig. 7a); the final measure of
similarity of the candidate solution set formulations also reflects
this result with a mid-density cluster exhibiting high similarity
(low Hamming Dist. and low Levenshtein Dist.), and the majority
of the formulations clustered further away (Supplementary
Fig. 7f). The composition of the formulations of the final candi-
date solution set analyzed by PCA provided an indication of the
factors and dose levels most conserved among the final for-
mulations. The PCA biplot revealed that arginine (ARG) was the
most highly conserved factor (Fig. 3b) at the mid-to-high-dose
levels (Supplementary Fig. 7g).

Robustness across cultures originating from different donors.
The top five formulations in T-cell cultures were selected, and the
cell expansion capacity of these formulations was compared to
those obtained from cultures using commercially available for-
mulations. The two commercial formulations (XVIVO-15 already
used as base media for PC and XuriEM) were tested under
conditions including and excluding serum supplementation. The
serum-free formulations identified through the HD-DE optimi-
zation (F1–F5) supported cell expansion at levels comparable to
those observed under serum-containing conditions (Fig. 4a,
Supplementary Data 2). Upon analysis of the variation in cell
expansion that occurred between the donor cells, the relative
variability observed from culture using F1–F5 formulations were
comparable to or less than that observed for cells cultured in
serum-supplemented media conditions and less than half the
variability level observed in commercial media used without
serum supplementation (Fig. 4b). The resulting expanded cell
population from cultures using the 5 serum-free formulations was
further characterized by identifying a set of cell surface markers
specific for T-cells. The overall composition of the population of
CD3-expressing cells displayed to be consistent across markers
and formulations at levels comparable to those observed in the
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cells of the serum-containing expansion culture (PC condition)
(Fig. 4c, Supplementary Table 3). The composition of the top 5
formulations (Fig. 4d, Supplementary Table 4) showed an
amplification of the most prevalent dose levels (Supplementary
Fig. 7g) for many of the factors suggested to be highly conserved
among the candidate solution set formulations (Fig. 3b).

Insights from post hoc multivariable analysis. The phenotype-
driven optimization process of the culture conditions generated
its own knowledge library consisting of the composition of tested
formulations and their corresponding biological response. Once
the search for optimal factor combinations was completed, this
library was used to conduct a post hoc multivariable analysis to
elucidate the main factors and possible interactions that sig-
nificantly contributed to the overall response versus those that
were less important. The data were fitted to a polynomial

quadratic model (Equation (1)) where the regressors correspond
to factor main effects (i.e. linear dose effects), two-factor inter-
action effects (synergies or antagonisms), and quadratic effects
(non-linear dose effects)28. For this analysis, the amplitude,
direction, and statistical significance of the regressors were cal-
culated (see Supplementary Data 3). The results of these analyses
are presented in volcano plots (Fig. 5a, b for TF-1; Fig. 5c, d for
T cells) where the negligible factor effects tend to fall near zero on
the horizontal axis (effect strength) and low on the vertical axis
(FDR logworth statistical significance). On the other hand, the
most important positive effects supporting cell expansion would
be found on the top right quadrant of the volcano plot and the
dominant-negative effects, on the top left. This analysis was
performed on each of the three replicated experiments (runs)
with TF-1 cells (Fig. 5a, b). As expected, rhGM-CSF was con-
sistently the most potent factor for TF-1 cell expansion (Fig. 5b,
Supplementary Table 5), with evidence of high-dose saturation
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(negative quadratic effect). For T cells, ARG had the strongest-
positive effect, in particular at the highest doses of the range
covered (no saturation), as indicated by its significant positive
quadratic effect. SP600125 and CHIR99021 consistently had a
pronounced negative effect on TF-1 cell expansion, although
some of the negative effects were attenuated to some extent by the
presence of other factors (as revealed by the number of significant
positive two-factor interactions in which either the small mole-
cules SP600125 or CHIR99021 were involved). Some other
negative effects seemed to occur mainly at high doses (ITS and
bME for TF-1 in Fig. 5b; bME and CB6 for T-cells in Fig. 5d), as
suggested by the predominance of the negative quadratic effects
relative to the main effects. Both TF-1 and T-cell expansion
seemed to be controlled by a large number of weaker positive and

negative two-factor interactions and a small number of dominant
main factor effects. As expected, the detection of the strongest
and most significant effects tend to be consistent across the
replicates of TF-1 experiments. On the other hand, the weaker
(but still significant) effects were not detected in all of the TF-1
experiments. In this analysis, the two-factor interactions that are
in the upper right section of the volcano plot are suggestive of
factor synergies (with the condition that the main and quadratic
effect component of these two factors are not significantly
negative). While strong factor synergies were not detected in the
case of TF-1 cells, there was at least one in T-cell culture such as
the synergy between ARG and GLU (ARG*GLU in Fig. 5d).
Interestingly, among the cytokines tested in T-cell culture (i.e. IL-
2, IL-12, IL-18, and IL-21) none had a significant positive main
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Fig. 5 Multivariable analysis of the dataset obtained through HD-DE optimization in vitro. a The full test library of formulations obtained from all 3 runs of
the HD-DE optimization performed on TF-1 cells (excluding G(1)) was used for post hoc analysis to elucidate the main effects, quadratic effects, and 2-
factor interactions. The logworth statistical significance of the regression coefficient estimates are presented in a plot where the significant effects (false
discovery rate (FDR)-corrected p-values <0.05) are colored while non-significant elements are grayed. b The data points that have significant effects
(colored data points from (a)) are labeled with the corresponding factor or interaction. c The full test library of formulations obtained from the HD-DE
optimization performed on T-cells (excluding G(1)) was used for post hoc analysis to elucidate the main effects, quadratic effects, and 2-factor interactions.
The FDR-statistically significant effects (expressed as logworth p-values) are colored while non-significant elements are grayed. d The data points that
have statistically significant effects (colored data points from (c)) are labeled with the corresponding factor or interaction. The square term suggest either a
supra-additive relationship (positive term) between effect and dose or a saturation (negative term), and the cross-product terms refer to 2-factor
interactions. (See Supplementary Table 2 for factor legend)
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effect while most had a significant positive interactions with at
least one of the other cytokines (e.g. IL-2*IL-21 in Fig. 5d). This
suggests that these cytokines cannot act on their own to promote
T-cell expansion and must signal in concert with others.

It is also possible with this analysis to find evidence of factor(s)
that may be inert. Inert factors would be expected to have no
significant main or quadratic effects and not be part of any
significant interactions. We found that rhIGF-1 and GL met these
criteria but only in some of the TF-1 experiment replicates (note
that this is not unexpected for GL given that it was already
present in the base culture media for TF-1 cells). We did not find
strong evidence of inert factors in T-cell culture, but ITS, IL-12,
and MEMAA were the least active factors among the ones tested.
The quadratic model used for the post hoc analysis is a simple
approximation and, therefore, is more accurate to study response
surfaces that are smoother10,12 than those with a more rugged
topography. Another limitation of the post hoc analysis is that
only two-factor interactions were taken into account in the model
and higher-order interactions (i.e. beyond two factors) were
assumed to be negligible29. Nonetheless, the most important
factors that were identified for TF-1 and T-cell expansion by
multivariable analysis (Fig. 5, Supplementary Data 3 and
Supplementary Fig. 8) agreed with the results of similarity
analysis (Supplementary Fig. 4c) and qualitative observations
(Supplementary Fig. 5).

Discussion
The proof-of-concept study presented here demonstrated the
ability of HD-DE, a closed feedback optimization system to
identify serum-free culture formulations for human hemato-
poietic cells from a large, complex solution space. The optimi-
zation process was guided by the HD-DE strategy, where the
improvement in overall efficiency was aided by selectively navi-
gating towards candidate solution regions based on those iden-
tified in the early generations, overcoming limitations of
conventional optimization methods such as restrictions on the
number of factors and doses that can be considered in combi-
nation30. As demonstrated by the correlation observed between
the similarity and multivariable analyses, further information
regarding the mechanisms governing the composition of the
formulations that promote cell expansion can be derived upon
completion of the optimization. For instance, a post hoc multi-
variable analysis of the serum-free formulations identified
through HD-DE optimization generated specific hypotheses
regarding factor synergies and also “silent” factors. This was made
possible by pointing to specific factor effects among a list of over a
hundred other candidates (including all main, quadratic and two-
factor interaction effects). This is a considerable benefit since it
now becomes possible to design follow-up experiments to eluci-
date the particular cellular mechanisms at play. Therefore, further
assessment of the formulations that were identified by HD-DE
could provide a starting point to further optimize, or reduce, the
culture compositions in a time- and cost-effective manner.

The HD-DE optimization strategy was applied to the discovery
of serum-free media formulations for human primary T-cell
expansion culture, demonstrating the applicability and feasibility
of executing a complex optimization process in a model-free,
phenotype-based algorithm-guided environment integrated with
high-throughput automation. The number of individual for-
mulations with T-cell expansion capacity comparable to the PC
condition was smaller than in the case of TF-1 cell culture.
However, the serum-free formulations identified produced cell
expansion populations with characteristics comparable to those
expanded in conventional serum-containing cultures (PC). More
importantly, in some of the serum-free formulations discovered,

T-cell expansion was an order of magnitude higher than those
expanded in cultures using commercially available serum-free
media formulations. It is important to note that the total costs of
reagents for the formulations identified were similar or lower
than commercially available serum-free media.

Interestingly, the top-performing serum-free formulations
identified through the HD-DE strategy seemed to display lower
donor-to-donor variability in T-cell expansion compared to the
commercially available formulations used without serum sup-
plementation. This can be advantageous as the use of robust
formulations free of animal- or human-derived serum supple-
mentation can be used earlier in the development process and
easily modified to suit various cell types and needs. The use of
serum-free formulations would also ease the standardization of
reagent quality and reduce the complexity of the regulatory
process expediting the translation and delivery of cell therapy
products.

The HD-DE optimization platform presented in the current
study demonstrated the feasibility of adopting an algorithm-
guided, high-dimensional optimization approach in the identifi-
cation and optimization of formulations for T-cell expansion
culture. The identified serum-free formulations can be further
developed into processes for applications, such as CAR T-cell
therapy. Treating the biological system as a “black box” may also
be particularly useful for a cell type that has yet to be fully
characterized, or applied in other optimization situations that
deal with complex problems involving a large number of factors
such as in cryopreservation protocols to improve cell recovery
upon thawing16. The success of the optimization process is
dependent on the definition of the problem consisting of the types
of factors as well as the dose range, which are parameters defined
prior to start of the optimization process and ones that can be
established without the need for extensive mechanistic studies.
The overall optimization approach of phenotype-based decision-
making suggests the possibility of establishing a standardized,
universal optimization protocol for any cell type or requirement,
making it possible to obtain culture medium with specific char-
acteristics on-demand which will dramatically facilitate the
implantation of a quality-by-design approach. This optimization
strategy also presents a blueprint to fully automate the optimi-
zation process in a high-throughput manner.

Methods
Compounding culture factor combinations for TF-1 cells. The epMotion 5070
liquid hander (Eppendorf) was used to compound the culture condition “recipe”
according to the prescribed algorithm-generated test formulations. Each factor was
diluted to the appropriate concentration in a base media of DMEM (Gibco
#12430054) supplemented with 1% Penicillin-Streptomycin (Pen-Strep; Gibco
#15140122) and distributed into 48-well plates. The 15 factors selected to sup-
plement the base media were Glycogen synthase kinase inhibitor (CHIR99021)
19,31, Jun N-terminal kinase inhibitor (SP600125)32, dexamethasone (Dexameth)4,
granulocyte macrophage-colony-stimulating factor (rhGM-CSF), stem cell factor
(rhSCF)33, insulin-like growth factor 1 (rhIGF-1)4, ascorbic acid (AA)4, Rho kinase
inhibitor (Y27632)19, albumin (ALB)33, fibronectin (FN)4, GlutaMAX™ Supple-
ment (GL)4,5, cholesterol concentrate (CH)4, ITS Supplement (ITS)4,33, β-
mercaptoethanol (bME)4,33, and sodium pyruvate (PY). The dose ranges tested for
each factor are listed in Supplementary Table 1.

TF-1 cell maintenance. TF-1 cells (ATCC #CRL-2003) were maintained in
recommended complete growth medium (RPMI 1640 (Gibco #22400089) sup-
plemented with 10% FBS (Gibco #12483020), 2 ng per ml recombinant human
Granulocyte-macrophage colony-stimulating factor (rhGM-CSF; R&D Systems
#215-GM-010), and 1% Pen-Strep in T25 or T75 flasks at 37 °C with 5% CO2.

T-cells preparation. T-cells were isolated from peripheral blood mononuclear cell
(PBMC). Buffy coats (Canadian Blood Services; Donor #2, donation #
C0510172128482; Donor #3, donation # C05101721879820) were diluted with
equal parts volume of sterile buffer of Dulbecco’s phosphate-buffered saline (DPBS,
GE Healthcare) with 2% Human Serum AB (Gemini Bio-products). PBMCs were
isolated using Ficoll-paque PLUS (GE Healthcare) according to manufacturer
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guidelines. The cells were washed by centrifugation once again, and resuspended in
10 ml of complete growth media (XVIVO CGM) consisting of XVIVO-15 (Lonza)
supplemented with 1% PenStrep, 5% human serum, 1% SG-200 (GE Healthcare),
and 350 IU per ml recombinant human Interleukin 2 (IL-2, GE Healthcare). The
cells prepared in the individual tubes were combined into a single tube and XVIVO
CGM added to a final volume of 80 ml.

CD-positive (CD3+) T-cells were isolated from PBMCs, either from Buffy
Coats or LeukoPak apheresis units (Stem Cell Technologies; Donor #1), as a CD3+
depletion fraction of a CD3-CD56+ NK-cell isolation process. The sequential
separation of cell populations utilized positive selection of the CD3+ fraction using
magnetic microbeads and the CliniMACS® System or MACS® Columns (Miltenyi
Biotec) according to manufacturer instructions. The isolated T cells were
resuspended in CryoStor-10 (CS10, BioLife Solutions) cryopreservation media at
aliquot sizes of 20 × 106 or 40 × 106 cells.

Canadian Blood Services approved REB application for work using donor blood
material conducted at CCRM, an approved CL2 facility with appropriate guidance
and procedures complying with all relevant ethical regulations, for research
purposes.

Compounding culture factor combinations for T-cells. The factors were com-
pounded using the Nimbus Microlab Liquid Handling System (Hamilton Robotics)
in basal media of DMEM/F12+ 1% PenStrep. Cryopreserved CD3+ cells from
DN1 were thawed in 10ml of basal media supplemented with 7% Bovine Serum
Albumin (Sigma; stock solution prepared to 200mg per ml in DPBS). The cells were
centrifuged (all centrifugation steps hereon at 400 g for 10min unless otherwise
specified) and the pellet washed and resuspended in plating media (basal media
supplemented with 2% Human Serum Albumin (Sigma; stock solution prepared to
200mg per ml in DPBS)). The cells were then counted and resuspended at target
density for seeding in plating media and activated with the addition of CD3/CD28/
CD2 T-cell activator (Stem Cell Technologies) according to manufacturer dosage
instructions. The 14 factors selected to supplement the base media were β-
mercaptoethanol (bME)34–36, LS1000 Lipid Supplement (LS1000)37, sodium pyr-
uvate (PY)34,38, Insulin-Transferrin-Selenium-Ethanolamine (ITS -X)35,39, albumin
(rhALB)35,37,40,41, MEM non-essential amino acids solution (MEMAA)37,39, L-
arginine (ARG)38, SG-200 solution (GLU)38,42, Cell Boost™ 6 (CN-T) supplement
(CB6), IL-2 growth factor (rhIL-2)34,38,43, Interleukin 12 (rhIL-12)34,38, Interleukin
18 (rhIL-18)34, Interleukin 21 (rhIL-21)44, and MEM vitamin solution (VS)37. The
dose ranges tested for each factor are listed in Supplementary Table 2.

TF-1 test combination culture. Upon completion of the compounding of culture
factor cocktails using the liquid handler, the cells were washed three times and
resuspended in DMEM+1% Pen-Strep. The cell suspension was allocated to each
well at a seeding density of 30,000 cells per ml and a total culture volume of 500 μl
per well which were incubated for 5 days. The serum-containing culture condition
(usual supplements added to a base medium of DMEM instead of RPMI 1640) was
used as the “Positive Control” (PC) condition.

TF-1 live cell count. The cell suspension was dissociated using TrypLE (Gibco),
transferred into 96-well V-bottom plates, washed with PBS, and resuspended in
HBSS+2% FBS with 1:1000 7-Aminoactinomycin D (7-AAD; Molecular Probes).
The numbers of live cells in each well were counted using the HTS platform on the
BD LSRFortessa flow cytometer (BD Biosciences) (Supplementary Fig. 9).

Live cell count and T-cell phenotype characterization. On day 5, the culture
plates were centrifuged and washed with DPBS to remove remnants of the culture
media. The cells were incubated for 10 min with 30 μl TrypLE (Thermo Fisher)
without fully dissociating the aggregates. All test wells with the exception of the
unstained sample were resuspended with 70 μl Flow buffer (DPBS+2% HS+1 mM
Ethylenediaminetetraacetic acid solution (EDTA, Sigma)) including 1:1000 7-AAD.
The aggregates were fully dissociated by gentle pipetting just prior to initiation of
the count protocol where the number of viable cells was counted using the
CytoFlex (Beckman Coulter) in plate mode, sampling at 90 μl per min for 40 s.

The selected formulations and cells were prepared as illustrated in previous
sections. On day 5, the culture plates were centrifuged and washed with DPBS to
remove remnants of the culture media. The cells were incubated for 30 min at 4 °C
in the dark with 50 μl T-cell flow cytometry panel master mix. After the incubation
period, 100 μl DPBS was added to each well and the plates centrifuged. The cells
were resuspended in 100 μl Flow buffer and the aggregates fully dissociated by
gentle pipetting just prior to initiation of the count protocol where the number of
viable cells were counted using the CytoFlex (Beckman Coulter) in plate mode,
sampling at 90 μl per min for 40 s (Supplementary Fig. 10).

Coding and statistical analyses. The algorithm was written in MATLAB
(Mathworks) and executed on a Windows 8.1 device. The initial conditions of the
native Differential Evolution parameters governing mutation (F) and crossover
(CR) (Supplementary Fig. 1) were defined as F= 1 and CR= 0.5. The values of
these parameters were changed according to the progression of the optimization,
where F was reduced to 0.5 upon detection of convergence of the overall score.
Following the reduction in F, CR was reduced to 0.25 when at least half of the

elements in the target formulation (Xi in Supplementary Fig. 1) were not changed
between two consecutive generations. For the in silico and in vitro TF-1 cell media
formulation optimization runs, a population size of 45 generated by 3 ×D (where D
corresponded to the number of factors, 15) was used. For the in vitro T-cell media
formulation run, a population size of 59 (3 ×D+ 17 extra test formulations to
utilize the increased capacity of the liquid handling platform) was used. The in
silico validation of the algorithm, including generation of simulated response data
points, lasted for ~40 min for each run. The comparison of HD-DE with random
selection (Supplementary Fig. 11) used the same benchmark as the in silico runs.
For the in vitro experiments, the optimization parameters were defined within
MATLAB and the algorithm was used to generate the test combinations. The
reagent transfer commands and subsequent results of the in vitro culture were
directly transferred from and from the MATLAB environment to the liquid
handler interface and from the flow cytometer software into MATLAB in the form
of CSV files. The post hoc multivariable analysis and principal component analysis
(PCA) were performed using JMP12 (SAS) on the same Windows 8.1 device. For
the multivariable analysis, all tested formulations excluding the initial populations
from all 3 TF-1 cell experimental runs were combined to generate the dataset. For
T-cells, only one dataset was available. Using JMP12, the response was then log-
transformed. Imputation of left-censored data was performed by estimating a
normal distribution of the response below count sensitivity threshold. A quadratic
polynomial model was fitted by least square regression using the response
screening platform in JMP. The equation included all quadratic (square) terms and
all two-factor interactions (crossproduct) terms in equation (1):

Y ¼ K þ Gpþ
XD

j¼1

βjxj þ
XD

i¼1

XD

j¼1

βijxixj þ
XD

j¼1

βjjx
2
j þ ϵ; ð1Þ

where Y corresponded to the log-transformed values of cell expansion, K corre-
sponded to the intercept, Gp was the block parameter for the pth generation, D
corresponded to the number of factors, βj corresponded to the main effect coef-
ficient for factor j, βij corresponded to the interaction effect coefficient between
factors i and j, xj corresponded to the coded dose [−1, 1] for factor j, xi corre-
sponded to the coded dose [−1,1] for factor i, and ε corresponded to the random
error (residuals). The statistical significance of the regression coefficient estimates
were false discovery rate (FDR)-corrected45 for p-values <0.05. The values for the
βi, βij, βjj and corresponding FDR p-values are provided for each experiment in
Supplementary Data 3. PCA was conducted on the compiled dataset of formula-
tions of the final candidate solution set from all 3 experimental runs.

Algorithm analysis and selection. Multiple competition rounds between for-
mulations within and across generations was incorporated for formulation selec-
tion and induction into the candidate solution set. All analyses were completed by
the algorithm upon input of test response (viable cell number count), generating
either output of test formulations for the next generation or determining the ter-
mination or completion of the optimization process. The competition required was
composed of three main elements. The first element, is competition within test
generation where the target formulations versus trial formulations within each
generation were compared according to the Wilcoxon rank-sum test. The winning
individual member of the population advanced to next round. The second element
is competition against best encountered where the formulations previously selected
in the candidate solution set were compared with any new formulations identified
with consideration given to the estimated inter-experimental variability to select
the better of the two. The third element was clearing/niching where, at later
generations, formulations that scored outside of a pre-defined threshold of a 10%
score range of candidate solution set formulations were actively replaced out by a
clearing mechanism. A combination of stochastic selection and deterministic
perturbation of the composition of root formulations was used to generate a pool of
candidate formulations from which a test formulation was randomly selected.

Similarity analysis. Two metrics analyzing similarity were adapted to assess the
degree of similarity between two formulations at consecutive generations. First, the
Hamming distance46 counted as the number of factors in a query formulation with
dose level designation not equal to the dose of the same factor in the reference
formulation. Second, the Levenshtein distance47 measured as the sum of dose levels
difference between the query and reference formulations overall factors. Formally,
the Levenshtein distance counts the number of edits (substitution, insertion, or
deletion of an element) required to change one formulation sequence to the other.
As the formulations being compared are of equal length, counting insertion, or
deletion edits become meaningless. Unlike comparison of two text sequences,
where such similarity measurements are often used, each element of the for-
mulation can vary across a range of doses coded and represented as 0, 1, 2, 3, …
This aspect of dose levels for each element was introduced to the substitution count
of the Levenshtein distance measurement by considering the discrepancy in the
number of doses between the corresponding elements in the query and reference
formulations. For the purposes of formulation analysis, the Levenshtein-equivalent
distance (hereon referred to as ‘Levenshtein distance’) measured the total number
of dose level discrepancies across all elements of the formulation sequence.
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Code availability. The custom code is available at GitHub (https://github.com/
julieaudet/cell-manufacturing).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current study are
available in figshare48, which include Supplementary Data 1-3.
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